

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Tuesday 11 June 2019

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Afternoon

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

Time allowed: 2 hours

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
TOTAL	

		Do not write
	Answer all questions in the spaces provided.	outside the box
0 1	This question is about amines.	
01.1	Give an equation for the preparation of 1,6-diaminohexane by the reaction of 1,6-dibromohexane with an excess of ammonia. [2 marks]]
0 1.2	Complete the mechanism for the reaction of ammonia with 6-bromohexylamine to form 1,6-diaminohexane.	_
	Suggest the structure of a cyclic secondary amine that can be formed as a by-product in this reaction.	
	[4 marks	1
	Mechanism	
	NH ₃	
	Br NH2	
	Cyclic secondary amine	

0 1.3	1,6-Diaminohexane can also be formed in a two-stage synthesis starting from 1,4-dibromobutane.	Do not write outside the box
	[3 marks] Stage 1 reagent and condition	
	Stage 2 reagent and condition	
01.4	Explain why 3-aminopentane is a stronger base than ammonia. [2 marks]	
01.5	Justify the statement that there are no chiral centres in 3-aminopentane. [1 mark]	
		12
	Turn over for the next question	

02.3	The cyclohexene separated in Question 02.2 was obtained as a cloudy liquid. The student dried this cyclohexene by adding a few lumps of anhydrous calcium chloride and allowing the mixture to stand.	Do not write outside the box
	Give one observation that the student made to confirm that the cyclohexene was dry. [1 mark]	
02.4	In this preparation, the student added an excess of concentrated phosphoric acid to 14.4 g of cyclohexanol ($M_r = 100.0$). The student obtained 4.15 cm ³ of cyclohexene ($M_r = 82.0$). Density of cyclohexene = 0.810 g cm ⁻³ Calculate the percentage yield of cyclohexene obtained. Give your answer to the appropriate number of significant figures.	
	[5 marks]	
	% yield	
	Question 2 continues on the next page	
	Turn over ►	
 	IB/G/Jun19/7405/2	2

03	The outer layers of some golf balls are made from a polymer called polyisoprene. The isoprene monomer is a non-cyclic branched hydrocarbon that contains 88.2 % carbon by mass. The empirical formula of isoprene is the same as its molecular formula.	Do not write outside the box
03.1	Deduce the molecular formula of isoprene and suggest a possible structure. [4 marks]	
	Molecular formula	
	Structure	
	Question 3 continues on the next page	

rum över 🕨

Do not write outside the

box

10

0 4

Substances **P** and **Q** react in solution at a constant temperature. The initial rate of reaction was studied in three experiments by measuring the change in concentration of **P** over the first five seconds of the reaction. The data obtained are shown in Table 1.

E versiment	Time after	Concentration / mol dm ⁻³		
Experiment	mixing / s	Р	Q	
1	0	1.00 × 10 ⁻²	1.25 × 10 ⁻²	
I	5.0	0.92×10^{-2}	not measured	
2	0	2.00 × 10 ⁻²	1.25 × 10 ⁻²	
2	5.0	1.84 × 10 ⁻²	not measured	
2	0	0.50×10^{-2}	2.50 × 10 ⁻²	
3	5.0	0.34 × 10 ⁻²	not measured	

Table 1

0 4 . 1 Complete Table 2 to show the initial rate of reaction of **P** in each experiment.

[1 mark]

Table 2

Experiment	Initial rate / mol dm ⁻³ s ⁻¹
1	1.6 × 10 ⁻⁴
2	
3	

04.2	Determine the order of reaction with respect to P and the order of reaction	Do not write outside the box
	with respect to Q.	
	[2 marks]	
	Order with respect to P	
	Order with respect to Q	
	·	
04.3	A reaction between substances ${f R}$ and ${f S}$ was second order with respect to ${f R}$ and	
	second order with respect to S . At a given temperature, the initial rate of reaction was 1.20×10^{-3} mol dm ⁻³ s ⁻¹	
	when the initial concentration of R was 1.00×10^{-2} mol dm ⁻³ and the initial concentration of S was 2.45×10^{-2} mol dm ⁻³	
	Calculate a value for the rate constant, k , for the reaction at this temperature. Give the units for k	
	[3 marks]	
	k Units	6
	Turn over ►	

11

Do not write outside the

box

0 5

The rate constant, *k*, for a reaction varies with temperature as shown by the equation

 $k = Ae^{-E_a}IRT$

For this reaction, at 25 °C, $k = 3.46 \times 10^{-8} \text{ s}^{-1}$ The activation energy $E_a = 96.2 \text{ kJ mol}^{-1}$ The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Calculate a value for the Arrhenius constant, A, for this reaction. Give the units for A.

[4 marks]

1 2

4

Do not write outside the box

0 6	This question is about isomers.
06.1	Give a reagent and observations for a test-tube reaction to distinguish between 2-methylbutan-1-ol and 2-methylbutan-2-ol. [3 marks]
	Reagent
	Observation with 2-methylbutan-1-ol
	Observation with 2-methylbutan-2-ol
06.2	Compounds A and B both have the molecular formula $C_4H_8Br_2$ A has a singlet, a triplet and a quartet in its ¹ H NMR spectrum. B has only two singlets in its ¹ H NMR spectrum.
	Draw a structure for each of A and B . [2 marks]
	A B
	Question 6 continues on the next page

Do not write outside the box

06.3	Compounds C and D both have the molecular formula $C_6H_3Br_3$ C has two peaks in its ¹³ C NMR spectrum. D has four peaks in its ¹³ C NMR spectrum.		
	Draw a structure for each of C and D		[2 marks]
	C	D	

box

Do not write outside the box 7

box

outside the

box

box

09.2	Suggest how the positions of the amino acids on the TLC plate were located.	[1 mark]	Do not write outside the box
09.3	Deduce the minimum number of amino acids present in the original mixture.	[1 mark]	
09.4	Suggest why it was necessary to use two different solvents.	[1 mark]	
	Turn over for the next question		4
	Tu	rn over ▶	

		Do not write
1 0	Some compounds with different molecular formulas have the same relative molecular mass to the nearest whole number.	outside the box
10.1	A dicarboxylic acid has a relative molecular mass of 118, to the nearest whole number.	
	Deduce the molecular formula of the acid. [3 marks]	
	Molecular formula	
10.2	A student dissolved some of the dicarboxylic acid from Question 10.1 in water and made up the solution to 250 cm ³ in a volumetric flask. In a titration, a 25.0 cm ³ sample of the acid solution needed 21.60 cm ³ of 0.109 mol dm ⁻³ sodium hydroxide solution for neutralisation.	
	Calculate the mass, in g, of the dicarboxylic acid used.	
	Give your answer to the appropriate number of significant figures.	
	[4 marks]	
	Mass q	
	U	

10.3	Compounds with molecular formula $C_6H_{14}O_2$ also have a relative molecular mass of 118 to the nearest whole number. These include the diol shown.	Do not write outside the box
	$\begin{array}{c} H \\ H_{3}C \\ -C \\ H_{2} \\ -C \\ H_{2} \\ -C \\ -C \\ H_{2} \\ -C \\ -C \\ -C \\ H_{3} \\ -C \\ -$	
	Deduce the number of peaks in the ¹ H NMR spectrum of this diol. [1 mark]	
10.4	Draw the structure of a different diol also with molecular formula $C_6H_{14}O_2$ that has a ¹ H NMR spectrum that consists of two singlet peaks. [1 mark]	
10.5	The dicarboxylic acid in question 10.1 and the isomers of $C_6H_{14}O_2$ in Questions 10.3 and 10.4 all have a relative molecular mass of 118	
	State why the dicarboxylic acid can be distinguished from the two diols by high resolution mass spectrometry using electrospray ionisation. [1 mark]	
		10
	Turn over for the next question	

box

box

box

	END OF QUESTIONS		
	Observation		7
	Reagent		
	Give the reagent and observation for the chemical test.	[2 marks]	
13.2	A student attempted to reduce a sample of 2-methylbutanal but added insufficient NaBH ₄ The student confirmed that the reduction was incomplete by using a chemical test.		
	Explanation		
	First step of mechanism		
	Explain why NaBH₄ reduces 2-methylbutanal but has no reaction with 2-methylbut-1-ene.	[5 marks]	
13.1	Show the first step of the mechanism of the reaction between NaBH ₄ and 2-methylbutanal. You should include two curly arrows.		
1 3	Aqueous NaBH ₄ reduces aldehydes but does not reduce alkenes.		Do not write outside the box

AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/G/Jun19/7405/2